Topics in the June 2014 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2014-J-2:

- Atomic Electronic Spectroscopy
- Band Theory MO in Solids
- Ionic Bonding

2014-J-3:

- VSEPR
- Types of Intermolecular Forces

2014-J-4:

• Nuclear and Radiation Chemistry

2014-J-5:

- Bonding MO theory (H₂)
- Bonding MO theory (larger molecules)

2014-J-6:

- Shape of Atomic Orbitals and Quantum Numbers
- Filling Energy Levels in Atoms Larger than Hydrogen

2014-J-7:

- Lewis Structures
- VSEPR

2014-J-8:

• Thermochemistry

2014-J-9:

- Chemical Equilibrium
- First and Second Law of Thermodynamics

2014-J-10:

• Chemical Equilibrium

2014-J-11:

- First and Second Law of Thermodynamics
- Gas Laws

```
2014-J-12:
```

• Equilibrium and Thermochemistry in Industrial Processes

2014-J-13:

• Electrolytic Cells

2014-J-14:

• Electrochemistry

2014-J-15:

• Electrochemistry

2205(a)

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1A - CHEM1101

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2014

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 13, 17, 20, 22 and 28 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
10	6			
11	5			
12	7			
14	6			
15	5			
16	6			
18	3			
19	3			
21	4			
23	6			
24	4			
25	6			
26	6			
27	3			
Total	70			
Check	total			

Marks An atomic absorption spectrometer with a path length of 1.0 cm is used to measure the 3 concentrations of copper in tap water. The results are shown below. The standard solution contains 5.0 ppm Cu. Sample Absorbance reading Standard solution (5.0 ppm Cu) 22.3 14.5 Unknown tap water Assuming the Beer-Lambert Law is applicable, what is the concentration of Cu in the unknown tap water? Answer: What is the absorption process that AAS measures? • Below are fragments of the ionic crystals of LiCl and MgO (not to scale). On the 3 diagrams, label the ions for each structure. LiCl MgO LiCl and MgO both adopt the same crystal lattice structure. Which of the two ionic compounds has the higher melting point? Why?

Marks • (*R*)-Carvone is a typical terpene, a class of compounds widely distributed in nature. 5 On the structure of (R)-carvone below, circle all of the carbon atoms with trigonal planar geometry. 0 (R)-carvone All terpenes are derived from isoprene and many, such as myrcene, (R)-citronellal and geraniol, are used in the perfume industry. OH Η isoprene myrcene (R)-citronellal geraniol b.p. 34 °C b.p. 167 °C b.p. 201 °C b.p. 230 °C Explain the differences in boiling points of these four compounds in terms of the type and size of the intermolecular forces present.

• Technetium-99m is an important radionuclide for medical imaging. It is produced from molybdenum-99. Fill in the box below to give a balanced nuclear equation for the production of Tc-99m from Mo-99.	Marks 7
$^{99}_{42}$ Mo \rightarrow $^{99m}_{43}$ Tc +	
The half-life of Tc-99m is 6.0 hours. Calculate the decay constant, λ , in s ⁻¹ .	
	_
Answer:	_
Calculate the molar activity in Bq mol ⁻¹ .	_
Answer:	-
Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay.	-
	_
	_
Answer:	_
Why is Tc-99m suitable for medical imaging? Give two reasons.	_

		H ₂	H ₂	0 ₂
Energy				
, , , , , , , , , , , , , , , , , , ,				
Give the bond	order of each H_2^+ :	species.	H ₂ ⁻ :	O ₂ :
Which of the f	our species ar	e paramagnetic?		
The bond leng	ths of H_2^+ and	H_2^- are different	t. Which do you	expect to be longer?

• A schematic representation of a <i>p</i> orbital i obscured) represents the atomic nucleus.	s shown below. The central sphere (mostly	Marks 2
How many spherical and planar nodes doe diagram above.	es this orbital have? Label them on the	
Number of spherical nodes:	Number of planar nodes:	
What is the principal quantum number, <i>n</i> ,	of this orbital? Explain your answer.	1
• Shielding is important in multi-electron at shielding.	coms. Briefly explain the concept of	3
Give one example of a consequence of shi	ielding.	

CHEM1101

2014-J-7

2205(a)

Molecule I otal number of valence electrons Lewis structure Shape of molecule NCl ₃ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Molecule Total number of valence electrons Lewis structure Shape of molecule NCl3 NCl3 Image: Comparison of the structure		m (1	T 1		
NCI3 Image:	NCl3 Incl	Molecule	Total number of valence electrons	Lewis structure	Shape of molecule	
ICl3 ICl3 ICl3 ICl3 • Thionyl chloride (SOCl2) is a common chlorinating agent in organic chemistry. Draw two possible Lewis structures for this molecule, assigning formal charges where appropriate. • Which is the more stable resonance form? Give a reason for your answer.	ICl3 ICl3 • Thionyl chloride (SOCl2) is a common chlorinating agent in organic chemistry. Draw two possible Lewis structures for this molecule, assigning formal charges where appropriate. • Which is the more stable resonance form? Give a reason for your answer.	NCl ₃				
ICl3 ICl3 • Thionyl chloride (SOCl2) is a common chlorinating agent in organic chemistry. Draw two possible Lewis structures for this molecule, assigning formal charges where appropriate. • Which is the more stable resonance form? Give a reason for your answer.	ICl3 ICl3ICl3 ICl3ICl3 ICl3					
Thionyl chloride (SOCl ₂) is a common chlorinating agent in organic chemistry. Draw two possible Lewis structures for this molecule, assigning formal charges where appropriate.	Thionyl chloride (SOCl ₂) is a common chlorinating agent in organic chemistry. Draw two possible Lewis structures for this molecule, assigning formal charges where appropriate. Which is the more stable resonance form? Give a reason for your answer.	ICl ₃				
Where appropriate.	where appropriate. Which is the more stable resonance form? Give a reason for your answer.	• Thiony Draw t	l chloride (SOCl ₂) i wo possible Lewis s	s a common chlorinating agen tructures for this molecule, as	t in organic chemistry. signing formal charges	
Which is the more stable resonance form? Give a reason for your answer.	Which is the more stable resonance form? Give a reason for your answer.	where	appropriate.			
Which is the more stable resonance form? Give a reason for your answer.	Which is the more stable resonance form? Give a reason for your answer.					
Which is the more stable resonance form? Give a reason for your answer.	Which is the more stable resonance form? Give a reason for your answer.					
Which is the more stable resonance form? Give a reason for your answer.	Which is the more stable resonance form? Give a reason for your answer.					
		Which	is the more stable re	esonance form? Give a reason	for your answer.	
		Which	is the more stable re	esonance form? Give a reason	for your answer.	

• A 1.0 imme so that	kg sample of copper metal is heated rsed in a volume of water initially at at the final temperature of the copper	to 100.0 °C. The copper sample is 25.0 °C. What volume of water is required is 40.0 °C? Show all working.	Marks 3
Data:	Specific heat capacity of Cu(s) is 0 Specific heat capacity of H ₂ O(l) is The density of water is 1.0 g mL ^{-1} .	.39 J $K^{-1} g^{-1}$. 4.184 J $K^{-1} g^{-1}$.	
		Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

2205(a)

Marks • Use the following equilibria: 2 $K_1 = 9.5 \times 10^{-13}$ $2CH_4(g) \iff C_2H_6(g) + H_2(g)$ $CH_4(g) + H_2O(g) \iff CH_3OH(g) + H_2(g) \qquad K_2 = 2.8 \times 10^{-21}$ to calculate the equilibrium constant, K_3 , for the following reaction: $2CH_3OH(g) + H_2(g) \iff C_2H_6(g) + 2H_2O(g).$ Show all working. Answer: The Second Law states that all observable processes must involve a net increase in • 1 entropy. When liquid water freezes into ice at 0 °C, the entropy of the water decreases. Since the freezing of water is certainly observable, the processes must still satisfy the Second Law. Provide a brief explanation of how this is so.

• Consider the following reaction.		Marks 4
$N_2O_4(g) \implies 2NO_2(g)$) $K_{\rm c} = 4.61 \times 10^{-3} \text{ at } 25 {}^{\circ}{\rm C}$	
A 0.086 mol sample of NO_2 is allowed to 0.50 L container at 25 °C. Calculate the a at equilibrium. Show all working.	come to equilibrium with N_2O_4 in a amount (in mol) of NO_2 and N_2O_4 present	
Amount of NO ₂ :	Amount of N ₂ O ₄ :	

Marks

3

• Give the balanced chemical equation for the combustion of butane gas, C₄H₁₀, in oxygen to produce CO₂ and water.

Use the standard enthalpies of formation provided to calculate the molar heat of combustion of butane gas. Show all working.

Data:	Compound	$H_2O(l)$	CO ₂ (g)	$C_4H_{10}(g)$
	$\Delta_{\rm f} H^{\rm o}$ / kJ mol ⁻¹	-285.8	-393.5	-125.6

• Calculate the volume change when 20.0 g of solid trinitrotoluene C₇H₅N₃O₆(s) explosively decomposes via the following process at 2000. °C and 2.0 atm.

 $2C_7H_5N_3O_6(s) \rightarrow 12CO(g) + 5H_2(g) + 3N_2(g) + 2C(s)$

Assume all gases behave as ideal gases and neglect the volume of any solid phases. Show all working.

3

Marks • The diagram below represents the equilibrium constant K_p associated with the 4 formation of the four oxides indicated. 50 $\frac{4}{3}$ Al + O₂ $\implies \frac{2}{3}$ Al₂O₃ 40 $\ln K_p$ $2Sn + O_2 \rightleftharpoons 2SnO$ 30 $2Zn + O_2 \rightleftharpoons 2ZnO$ 20 $2C + O_2 \rightleftharpoons 2CO$ 10 0 200 400 600 800 1000 0 Temperature (°C) Using the equilibrium constant data above, describe the reaction that proceeds under the following conditions. If you think no reaction will occur, write 'no reaction'. CO and Sn are combined at 400 °C Al and SnO are combined at 400 °C C and ZnO are mixed at 900 °C Which oxide has the largest (most negative) enthalpy of formation?

•	An aqueous solution of 1 M CuSO ₄ under necessary for a reaction to proceed, what Explain your answer.	rgoes electrolysis. At the minimum voltage products form at the anode and the cathode?	Marks 6
	Write a balanced overall reaction for the e	electrolytic cell.	
	Assuming no overpotential, what would be overall reaction at a pH of 0?	be the minimum voltage required to drive the	
		Answer:	
	At a pH of 7, would a higher or lower vol Explain your answer.	tage be required to drive the reaction?	

•	An electrochemical cell consists of an Fe ² Sn ²⁺ /Sn half-cell with $[Sn^{2+}] = 1.10$ M. T of the cell was measured at 25 °C to be 0. the Fe ²⁺ /Fe half-cell?	$^{2+}$ /Fe half cell with unknown [Fe ²⁺] and a The electromotive force (electrical potential) 35 V. What is the concentration of Fe ²⁺ in	Marks 6
		Answer:	-
	Calculate the equilibrium constant for the	e reaction at 25 °C.	
			_
		Answer:	_
1	Calculate the standard Gibbs free energy	change for the reaction at 25 °C.	_
			-
		Answer:	

• A concentration cell is constructed from two beakers containing 1 M NiCl ₂ and 0.002 M NiCl ₂ . Describe the overall change that occurs as the concentration cell runs.	Marks 3
What would be the major driving force for the overall reaction, enthalpy or entropy? Explain your answer.	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa = 1.013 bar	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 J = 1 kg m^2 s^{-2}$

Deci	imal fract	ions	Deci	Decimal multiples								
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol							
10^{-3}	milli	m	10^{3}	kilo	k							
10^{-6}	micro	μ	10^{6}	mega	Μ							
10^{-9}	nano	n	10 ⁹	giga	G							
10^{-12}	pico	р	10^{12}	tera	Т							

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_{3}^{-}(aq) + 10H^{+}(aq) + 8e^{-} \rightarrow NH_{4}^{+}(aq) + 3H_{2}O$	+0.88
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.136
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ca}(s)$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{\log O} \log O \text{ (at 25 °C)}$
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A e^2 N$	Area of circle = πr^2
$L = -A \frac{1}{4\pi\varepsilon_0 r} N_A$	Surface area of sphere = $4\pi r^2$

	ACTINOIDS		LANTHANOID		[223.0] [Fr	FRANCIUM	87	132.91	Cs	CAESIUM	22	85.47	Rb	I C	27	30 10	K	POTASSIUM	10	22.99	Na	N MDIGOS	11	6 9 4 1		LITHIUM)	1008	HYDROGEN	1	1
Ac [227.0]	ACTINIUM	138.91	La	LANTHANUM	226.0]	Ra	RADIUM	58 88	137.34	Ba	BARIUM	26 ک	87.62 8	Sr	JO STRONTIUM Y	20	40 08 4	Ca	CALCIUM SC	200	24 3 1	Mg	AAGNESIUM	1010	9 012	Be	4	~				2
Th 232.0	тноким	140.1	Ce	58	[RUTH	-103	1,		н т / /	7-71	8.91 9	Y	TTRIUM ZIR	20	4 96 4	Sc		2 1												ယ
4 [2	PRO	2 1		PRAS	263]	Rf	ERFORDIUM	104	78.49	Hf	AFN1UM	CL	1.22	Zr		10	28 2	Ti	ZZ Tanium	い い												4
Pa 231.0]	91 TACTINIUM	40.91	Pr	59 SEODYMIUM	[268]	Db	DUBNIUM	105	180.95	Ta	TANTALUM	73	92.91	Np		/11	50 04	V	VANADIUM	22												J
U 238.03	92 uranium	144.24	Nd	00 NEODYMIUM	[271]	n Se	SEABORGIUM	106	183.85	W	TUNGSTEN	74	95.94	Mo	HCLYBDENUM	10	52 00	Cr	CHROMIUM	2												6
Np [237.0]	93 Neptunium	[144.9]	Pm	61 PROMETHIUM	[274]	Bh	BOHRIUM	107	186.2	Re	RHENIUM	75	[98.91]	Tc	TECHNETIUM	12	54 04	Mn	MANGANESE	20												7
Pu [239.1]	94	150.4	Sm	62 samarium	[270]	Hs	HASSIUM	108	190.2	0s	OSMIUM	76	101.07	Ru	RUTHENIUM	11	77 07	Fe		30												8
Am [243.1]	95	151.96	Eu	63 Europium	[278]	Mt	MEITNERIUM D	109	192.22	Ir	IRIDIUM	77	102.91	Rh	кнорим	17.00	58 03	C	COBALT	10												9
Cm [247.1	96 curium	157.25	Gd	64	[281]	Ds	ARMSTADTIUM R	110	195.09	Pt	PLATINUM	82	106.4	Pd	PALLADIUM	16	28 60	Ż	NICKEL	oc												10
E] [24	BERK	15		те с	[281]	Rg	OENTGENIUM	111	196.97	Au	GOLD	79	107.87	Ag	SILVER	717	63 55	Cu	COPPER	20												11
3k 17.1]		8.93	Ъ	555	[285]	Cn	COPERNICIUN	112	200.59	Hg	MERCURY	08	112.40	Cd	CADMIUM	91	65 30	Zn	ZINC 20	70												12
Cf 252.1]	98 ALIFORNIUM	162.50	Dv	66 VSPROSIUM			-		204.37	TI	THALLIUM	81	114.82	In	INDIUM	10	CL 69	Ga	GALLINN I Ç	21	26.98			10.01	10 81	в	BORON	n				13
Es [252.1]	99 EINSTEINIUM	164.93	Ho	67	[289]	E	FLEROVIUM	114	207.2	Pb	LEAD	68	118.69	Sn		50	77 50	Ge	GERMANIUM	20	28.09	S	silicon	12.01	10 11	n	CARBON					14
Fm [257.1]	100 Fermium	167.26	Er	68					208.98	Bi	BISMUTH	٤8	121.75	Sp	J L ANTIMONY	7.1 L	74 07	As	J J	22	30.97	Р	PHOSPHORUS	1 7.01	14 01	Z	NITROGEN	J				15
Md [256.1]	101	168.93	Tm	тнилим 69	[293]	Lv	LIVERMORIUM	116	[210.0]	$\mathbf{P0}$	POLONIUM	84	127.60	Te	JL TELLURIUM	20.01	78 96	Se	54	27	32.07	S		10.00	16 00	0	OXY GEN	0				16
No [259.1]	102	173.04	Yb	70 VTTERBIUM					[210.0]	At	ASTATINE	۶2 ا	126.90	Ι	IODINE	53	70 00	Br	BROMINE	32	35.45	C	L /	1,00	19 00	J	FLUORINE	>				17
\mathbf{Lr} [260.1]	103 LAWRENCIUM	174.97	Lu	71					[222.0]	Rn	RADON	98	131.30	Xe	XENON	×7	08 28	Kr	50 KRYPTON	36	39.95	Ar		10	20.18	Ne		10	4 003	HELIUM	2	18

PERIODIC TABLE OF THE ELEMENTS

June 2014

(q)\$077